ORTHO METALATION DIRECTED BY Q-AMINO ALKOXIDES. AN IMPROVED SYNTHESIS OF ORTHO-SUBSTITUTED ARYL KETONES

Daniel L. Comins* and Jack D. Brown Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322

Summary: Ortho-substituted arv] ketones are prepared from N-[2-(dimethylamino)ethyl-Nmethylbenzamides via ortho lithiation of intermediate α -amino alkoxides, formed in situ by addition of RLi. An ortho lithiation of N-[2-(dimethylamino)ethyl]-N-methylbenzamide is also described.

Tertiary α -amino alkoxides, formed in situ by the addition of an organolithium reagent to a tertiary arylcarboxamide, can be ortho-lithiated and alkylated to provide orthosubsituted arvl ketones.¹⁻³ This method works well for the directed α -metalation of thiophenes¹ and furans² due to their ease of deprotonation. Gschwend and co-workers³ have reported using this method with benzenoid systems. They converted N.N-dimethyl-pchlorobenzamide (1) directly into ortho-substituted aryl ketones 2 via addition of RLi followed by ortho lithiation and reaction with an electrophile. However, the α -(N,Ndimethylamino) alkoxide group is not a strong ortho director, and the isolated yields of 2 are only moderate.³ To make this method general and useful for a variety of benzenoid systems, a more powerful ortho directing α -amino alkoxide group is needed.

Recently in our laboratories we have been studying the chemistry of α -amino alkoxides.4-6 We have reported a novel one-pot ortho alkylation of aromatic aldehydes via ortho-lithiated α -(N-methylpiperazino)benzyl alkoxides.⁵ The intermediate α -amino alkoxides were formed in situ via the addition of arvl aldehydes to lithium Nmethylpiperazide in benzene. The α -(N-methylpiperazino) alkoxide group proved to be a weak ortho director and vigorous metalation conditions (3 n-BuLi, benzene, reflux) were needed to effect ortho lithiation.⁵ It was subsequently discovered that the metalation rate could be dramatically increased by varying the amine component of the α -amino alkoxide.⁶ For example, when N,N,N'-trimethylethylenediamine was used as the amine component, benzaldehyde could be ortho-metalated-silylated at low temperature in high yield as shown below. The metalation rate increase is undoubtedly due to an intramolecular TMEDA-like assisted metalation. 6

We have applied the diamine concept to the Gronowitz-Gschwend procedure for the synthesis of ortho-substituted aryl ketones as shown below. The results are given in the table. The yields are high and the method is clearly superior to the original version

using N, N-dimethylbenzamides. This is most evident in the synthesis of 3-chloro-2-(methylthio)acetophenone (entry 8), where ortho lithiation-alkylation must occur at low temperature to prevent benzyne formation.⁷ Under the same conditions, N,N-dimethyl-3chlorobenzamide gave mainly 3-chloroacetophenone (80%) and only a trace (<1%) of the desired ortho-substituted product (entry 9).

The N-[2-(dimethylamino)ethyl]-N-methylbenzamides undergo nucleophilic attack by lithium reagents as demonstrated, however, with <u>sec</u>-BuLi/TMEDA at -78°C (THF) addition does not occur and ortho lithiation results. This of course is directly analogous to the ortho lithiation of N,N-diethylbenzamides, a powerful methodology initially introduced by Beak and Brown.⁸ The main disadvantage of the N,N-diethyl amide as an ortho metalation directing group is its resistance to hydrolysis.⁹ In contrast, the amino amide <u>5</u> is easily hydrolyzed with 6N HCl(reflux) to <u>0</u>-toluic acid (<u>6</u>).¹⁰ This new ortho-directing group should compliment Beak's methodology, and work is in progress toward that goal.

<u>Aknowledgements.</u> Financial support of this work by the donors of the Petroleum Research Fund, administered by the American Chemical Society, is gratefully acknowledged.

Ent	ry Amide	Reaction Conditions ^a		E	Product ^b	Yield ^C %	mp,°C (lit. mp)
1	N,N-dimethyl benzamide	1) 1.5 MeLi, PhH, O°, 1/ 2) 3 <u>n</u> -BuLi, RT, 5h	'2 h	MeI	<u>o</u> -methyl- acetophenone	33q	
2	<u>3</u> , X = H	1) 1.5 MeLi, PhH, O°, 1/ 2) 3 <u>n</u> -BuLi, RT, 5h	'2 h	MeI	<u>o</u> -methyl- acetophenone	77 (88) ^d	2 ,4- DNP 160-162 (161-162) ¹
3	<u>3,</u> X = H	1) 1.1 <u>n</u> -BuLi, PhH, O°, 1/ 2) 3 <u>n</u> -BuLi, RT, 24h	'2 h	MeI	<u>o</u> -methyl- valerophenone	55	2,4-DNP 75-77 (76-78) ¹¹
4	<u>3,</u> X = H	1) 1.1 <u>n</u> -BuLi, PhH, O°, 1/ 2) 3 <u>n</u> -BuLi, RT, 24h	'2 h	MeSSMe	<u>o</u> -(methylthio) valerophenone	-77	2,4-DNP 130-132, t
5	<u>3,</u> X = H	1) 1.5 PhLi, PhH, O°, 1/ 2) 3 <u>n</u> -BuLi, RT, 12h	'2 h	MeI	<u>o</u> -methyl- benzophenone	85	oxime 114-116 (116) ¹²
6	<u>3,</u> X = <u>p</u> -C1	1) 1.5 MeLi, THF, -20°, 3/ 2) 3 <u>n</u> -BuLi, -20°, 4h	'4 h	MeSSMe	o-(methylthio) chloroacetopł	-85 ienone	62-63 (62) ³
7	<u>3,</u> X = <u>p</u> -C1	1) 1.5 MeLI, THF, -20°, 3/ 2) 3 <u>n</u> -BuLi, -20°, 4h	'4 h	Mel	<u>o</u> -methyl- <u>p</u> - chloroacetophe	87 enone	oxime 68-69 (69) ¹³
8	<u>3</u> , X = <u>m</u> -C1	1) 1.5 MeLi, THF, -78°, 3/ 2) 3 <u>n</u> -BuLi, -78°, 7h	'4 h	MeSSMe	<u>o</u> -(methylthio) <u>m</u> -chloroacetor	-63 henone	2 ,4-DNP 107-108, 1
9	N,N-dimethyl-m- chlorobenzamide	1) 1.5 MeLi, THF, -78°, 3/ 2) 3 <u>n</u> -BuLi, -78°, 7h	'4 h	MeSSMe	<u>o</u> -(methylthio) <u>m</u> -chloroacetop	d ا henone	
10 m	N,N-dimethyl- <u>p</u> - ethoxybenzamide	1) 1.5 MeLi, PhH, RT, 4h 2) 3 <u>n</u> -BuLi, THF, -20°, 24	h,	MeI	<u>o-methyl-p-</u> methoxyacetoph	2 ^d Ienone	
11	<u>3</u> , X = <u>p</u> -OMe	1) 1.5 MeLi, PhH, RT, 4h 2) 3 <u>n</u> -BuLi, THF, -20°, 24	h	MeI	o-methyl-p- methoxyacetoph	83 ienone	semicarba- zone 198-200 (198-200)

Table Synthesis of Ortho-Substituted Aryl Ketones From Tertiary Benzamides

^aReactions were performed on a 3-mmol scale. THF was added to the reaction mixtures in benzene prior to cooling to -42° C and adding the electrophile (6 equiv). The workup consisted of pouring the reaction mixture into stirred cold 10% aqueous HCl followed by extraction with ether.

 b All products gave the expected IR and l H NMR spectra. New products, from entries 4 and 8, gave satisfactory analytical data.

^CYields are for isolated, pure, material obtained from preparative layer chromatography (silica gel, acetone-hexanes).

^dGC yield.

References and Notes.

- U. Michael and S. Gronowitz, <u>Acta. Chem. Scand.</u>, <u>22</u>, 1353 (1968); V. P. Litvinov, Ya. L. Gol'dfarb, V. V. Zelentosov, L. G. Bogdanova, and N. N. Pewtukhova, <u>Khim.</u> <u>Geterotsikl. Soedin.</u>, 486 (1975); V. P. Litvinov, T. V. Schchedningskaya, P. A. Konstantinov, and Ya. L. Gol'dfarb, <u>Khim. Geterotsikl. Soedin.</u>, 492 (1975).
- 2. S. Gronowitz, Ark. Kemi, 32, 283 (1970).
- L. Barsky, H. W. Gschwend, J. McKenna, and H. R. Rodriquez, <u>J. Org. Chem.</u>, <u>41</u>, 3651 (1976).
- D. L. Comins, and W. Dernell, <u>Tetrahedron Lett.</u>, 1085 (1981); D. L. Comins and J. D. Brown, <u>Tetrahedron Lett.</u>, 4213 (1981).
- 5. D. L. Comins, J. D. Brown, and N. B. Mantlo, Tetrahedron Lett., 3979 (1982).
- D. L. Comins and J. D. Brown, <u>J. Org. Chem.</u>, in press. This paper was presented in part at a recent ACS meeting. D. L. Comins, J. D. Brown, and N. B. Mantlo, ORGN, 117, 185th National Meeting of the American Chemical Society, Seattle, Washington, March 20-25, 1983.
- H. Gilman and R. D. Gorsich, <u>J. Am. Chem. Soc.</u>, <u>78</u>, 2217 (1956); A. I. Meyers and W. Rieker, <u>Tetrahedron Lett</u>., <u>23</u>, 2091 (1982).
- 8. P. Beak and R. A. Brown, J. Org. Chem., 42, 1823 (1977).
- For a review on directed lithiation of aromatic tertiary amides, see P. Beak and V. Snieckus, <u>Acc. Chem. Res.</u>, <u>15</u>, 306 (1982).
- 10. Hydrolysis of N,N-diethyl-o-methylbenzamide did not occur under these conditions.
- 11. B. Cazes and S. Julia, <u>Tetrahedron</u>, <u>35</u>, 2655 (1979).
- 12. P. R. Austin and J. R. Johnson, <u>J. Am. Chem. Soc.</u>, <u>54</u>, 647 (1932).
- 13. J. Claus, J. Prak. Chem., 2, 43 (1892).
- 14. C. R. Noller and R. Adams, J. Am. Chem. Soc., 46, 1889 (1924).
- The amino amide was added to <u>sec</u>-BuLi/TMEDA in THF at -78°C. (Received in USA 9 September 1983)